1. Hive
1.1. 基本信息
- 参考资料:dropbox/PyHive
- 使用的是 hiveserver2 服务,默认端口是10000。
- Linux下安装:
conda install thrift sasl pyhive
- PS:直接用pip好像不太行,不能安装sasl。
- Windows下安装:
- 安装Visual C++ 2015 Build Tools
- 安装python包:
- 由于使用
pip install sasl
有问题,所以到这里直接下载sasl的whl文件,通过pip进行安装。 pip install PyHive
- 由于使用
1.2. 基本使用
可以通过 DB-API 或 SqlAlchemy 来操作 Hive。
其基本使用其实就是查看 DB-API 或 SqlAlchemy。
DB-API 实例
1
2
3
4
5
6
7from pyhive import hive
conn = hive.Connection(host='10.8.13.120', port=10000, username='hdfs', database='default')
cursor = conn.cursor()
cursor.execute('show tables')
for result in cursor.fetchall():
print(result)SqlAlchemy 实例
1
2
3
4
5
6
7
8
9from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
# Presto
engine = create_engine('presto://localhost:8080/hive/default')
# Hive
engine = create_engine('hive://localhost:10000/default')
logs = Table('my_awesome_data', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=logs).scalar())
2. HBase
2.1. 基本信息
参考资料
进入响应环境后,安装
happybase
与thrift
1
2pip install happybase
pip install thrift错误处理:
- 出现的错误:
thriftpy.parser.exc.ThriftParserError: ThriftPy does not support generating module with path in protocol 'd'
- Windows中才会出现此问题。
- 参考此文处理
- 解决方案:修改
Lib\site-packages\thriftpy\parser\parser.py
文件中的代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26# 修改前
url_scheme = urlparse(path).scheme
if url_scheme == '':
with open(path) as fh:
data = fh.read()
elif url_scheme in ('http', 'https'):
data = urlopen(path).read()
else:
raise ThriftParserError('ThriftPy does not support generating module '
'with path in protocol \'{}\''.format(
url_scheme))
# 修改后
url_scheme = urlparse(path).scheme
if url_scheme == '':
with open(path) as fh:
data = fh.read()
elif url_scheme in ('c', 'd','e','f'): # 代表c盘、d盘、e盘、f盘等
with open(path) as fh:
data = fh.read()
elif url_scheme in ('http', 'https'):
data = urlopen(path).read()
else:
raise ThriftParserError('ThriftPy does not support generating module '
'with path in protocol \'{}\''.format(
url_scheme))
- 出现的错误:
2.2. 基本使用
建立连接
1
2import happybase
connection = happybase.Connection(HOST_IP)显示可用表刚
1
print(connection.tables())
创建表
1
2
3
4
5
6
7
8
9
10# DOCS: http://happybase.readthedocs.io/en/latest/api.html#happybase.Connection.create_table
# create_table(name, families)
# name (str) – The table name
# families (dict) – The name and options for each column family
families = {
'cf1': dict(max_versions=10),
'cf2': dict(max_versions=1, block_cache_enabled=False),
'cf3': dict(), # use defaults
}
connection.create_table('mytable', families)获取表、行对象
1
2
3
4
5
6# 不需要进行编码
table = connection.table('table_name')
# 需要进行编码
# 取得的数据结构是字典,形如 {b'cf:col1': b'value1'}
row = table.row(b'row_key')2.5. 基本操作
1
2
3
4
5
6
7
8
9
10
11# 获取数据,需要编码
print(row[b'cf1:col1'])
# 存储数据,需要编码
# DOCS: http://happybase.readthedocs.io/en/latest/api.html#happybase.Table.put
table.put(b'row-key', {b'cf:col1': b'value1', b'cf:col2': b'value2'}, timestamp=123456789)
table.put(b'row-key', {b'cf:col1': b'value1'})
# 删除数据,需要编码
table.delete(b'row-key')
table.delete(b'row-key', columns=[b'cf1:col1', b'cf1:col2'])2.6. 批量操作
1
2
3
4
5
6
7# DOCS: http://happybase.readthedocs.io/en/latest/api.html#batch
b = table.batch()
b.put(b'row-key-1', {b'cf:col1': b'value1', b'cf:col2': b'value2'})
b.put(b'row-key-2', {b'cf:col2': b'value2', b'cf:col3': b'value3'})
b.put(b'row-key-3', {b'cf:col3': b'value3', b'cf:col4': b'value4'})
b.delete(b'row-key-4')
b.send()2.7 连接池
1
2
3
4
5
6
7
8
9# DOCS: http://happybase.readthedocs.io/en/latest/api.html#connection-pool
pool = happybase.ConnectionPool(size=3, host='...')
# 应尽快使用connection对象,不应在with中处理数据
# 在with中获取数据,在with外处理数据
with pool.connection() as connection:
table = connection.table('table-name')
row = table.row(b'row-key')
process_data(row)
3. HDFS
3.1. 基本信息
- 参考资料
- 安装:
pip install hdfs
3.1. 基本使用
创建 client 对象
1
2from hdfs.client import Client
client = Client("http://hdfs:50070/", root="/")其他基本操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26# 创建目录
client.makedirs("/test",permission=777)
# 查看指定目录下文件列表
# status:为True时,也返回子目录的状态信息,默认为Flase
client.list(hdfs_path, status=False)
# 重命名/移动文件
client.rename(hdfs_src_path, hdfs_dst_path)
# 写入
# 追加/覆盖文件,主要看 overwrite 选项
client.write(hdfs_path, data, overwrite=True, append=False)
# 从hdfs下载文件到本地
client.download(hdfs_path, local_path, overwrite=False)
# 从本地上传文件到hdfs
client.upload(hdfs_path, local_path, cleanup=True)
# 删除hdfs中文件
client.delete(hdfs_path)
# 读取文件
with client.read('foo') as reader:
content = reader.read()